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Longitudinal tensile failure of 
unidirectional fibrous composites 
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This paper presents a theoretical treatment of the tensile strength of a unidirectional 
fibrous composite, subjected to a tensile load in the fibre direction. The fibres are treated 
as having a statistical strength distribution which results in fibre failure prior to composite 
failure. The failure geometry of the model is similar to the observed geometry of fractured 
glass/epoxy and glass/polyester composites. Failure criterion is established and the 
strength is shown to decrease as the length of the specimen is increased. This size effect 
is very small. 

1. In t roduct ion 
Strength of unidirectional fibrous composites 
when a tensile load is applied in the fibre 
direction has been studied by several investigat- 
ors. The simplest approach is to assume that 
the failure strength of a given fibre population is 
a unique quantity. Thus, when all fibres in a 
composite specimen have the same tension, the 
specimen fails when the failure strain of the 
fibres is reached [1 ]. This approach is acceptable 
for ductile fibres, having essentially a unique 
failure strain. A comprehensive review of the 
literature dealing with longitudinal strength of 
fibrous composites has been presented by Kelly 
and Davies [2] with principal attention toward 
metal fibres embedded in a metal matrix. 

Most fibres used in high stlength and high 
stiffness composites are brittle, and their strength 
can generally only be characterized statistically 
due to distribution of flaws and imperfections in 
the brittle fibres. Parrott [3] included the 
statistical nature of fibre strength in the analysis 
of a fibrous composite. In his model, failure 
occurs when the number of fibre fractures 
caused by the increasing applied load increases to 
such a level that the unbroken segments of fibres 
are too short and the load cannot be transmitted 
to them because the matrix shear strength has 
been exceeded. Rosen [4] presented a theoretical 
and experimental treatment of the failure of 
fibrous composites. He treated the fibres as hav- 

ing a statistical distribution of flaws or imperfec- 
tions that result in fibre fracture under an applied 
load even before total failure of the specimen. 
The load carried previously by a broken fibre is 
assumed to be distributed equally among all the 
unbroken fibres in the same cross section where 
the break is. Composite failure occurs when the 
weakest cross section cannot sustain the applied 
load. The theoretical prediction of strength given 
by Rosen is generally found to be higher than 
experimental values. Zweben [5] studied the 
influence of load concentrations caused by fibre 
breaks on the strength of two-dimensional 
composites, using the geometrical model of 
Rosen. It was shown that load concentrations 
had a significant effect on strength. 

The failure model introduced by Rosen [4] 
assumes statistical accumulation of fibre fi actures 
with increasing load until a sufficient number of 
fractures occur at some cross sectional region of 
the composite, resulting in composite failure. The 
fracture process, thus, takes place at a single cross 
section of the specimen. Some composite 
materials do in fact fail in such a manner 
(e.g., some calbon/epoxy composites). Experi- 
mental results with glass reinforced plastics (e.g, 
epoxy or polyester), however, show very 
complicated fracture surfaces (Fig. l). The test 
specimen does not fail at a single cross section. 
Instead, bundles of fibres, grouped together, 
seem to fracture at different locations along the 
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Figure 1 Typical failure of glass/polymer composite 
material. 

specimen, followed by new fractmed surfaces 
running parallel to the fibres. The final shape of 
the fractured specimen is shown in Fig. 1. It was 
therefore decided to propose a new failure model 
that agreed with the observed failure geometry. 
The proposed model is based on the cumulative 
weakening model of Rosen [4] but it is not 
assumed to fail in a single cross section. 

Size effect in brittle materials has been studied 
previously, and in particular the effect of length 
on the strength of glass fibres has been investi- 
gated by Metcalfe and Schmitz [6]. It was found 
that strength of glass fibres exhibits a significant 
size effect. When glass fibres are used in a 
composite material the size effect is drastically 
reduced since failure of single filaments does not 
cause immediate failure of the composite. 
Investigation of size effect in unidirectional glass 
reinforced composites is rather difficult to 
conduct since the size effect is quite small. Some 
experimental results have been reported, how- 
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ever, showing a slight reduction in strength for 
longer specimens [7]. The results of the present 
analysis show that a small decrease in strength is 
expected when the size of the specimen is 
increased by a few orders of magnitude. 

2, Description of model 
The model proposed in this paper is based on the 
cumulative weakening model introduced by 
Rosen [4]. Rosen's model consists of parallel 
fibres in a homogeneous matrix subjected to a 
tensile load in the fibre direction. The fibres are 
treated as having a statistical distribution of 
flaws or imperfections which result in fibre failure 
at various stress levels. When a tensile load is 
applied to the specimen some fibres fracture at 
points of imperfection. The portion of a broken 
fibre near a break is not fully effective as a load 
carrying element. The model is considered to be 
composed of a series of layersperpendicular to the 
fibres as shown in Fig. 2. The thickness of each 
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Figure 2 Tensile failure model of fibrous composite 
material (B. W. Rosen). 

layer, 3, depends on the constituents' moduli and 
volume fraction of the fibres in the composite. 
It is a measure of the distance from a broken end 
of a fibre which is necessary to build the stress in 
the broken fibre to its normal value, by way of 
shear stresses in the matrix. The segment of a 
fibre within a layer may be considered as a link 
in the chain that constitutes the fibre. Each layer 
is a bundle of such links, and the composite is a 
series of such bundles. 

When some fibres fracture, Rosen [4] assumes 
that the load is distributed uniformly among the 
unbroken fibres in each layer. Increasing load 
produces an increasing number of fibre fractures. 
Composite failure occurs when the remaining 
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unbroken fibres at the weakest layer are unable 
to sustain the applied load. The result of this 
analysis for fibres characterized by a strength 
distribution of the Weibull type [8] is the 
definition of a statistical mode of the composite 
strength %* 

%* -- (~ 8/3e)-1/# (1) 

where ~ and /3 are constants describing fibre 
strength, 8 is the thickness of a layer (or ineffect- 
ive length) and e is the base of natural logarithms. 

When a unidirectional fibrous composite 
(glass/epoxy) is subjected to a slow strain rate 
tensile test, in the fibre direction, it is observed 
that as the applied load approaches the value of 
the composite's strength, some groups of fibres 
(with the matrix material holding them together) 
break away from the specimen. (These groups of 
fibres are termed "strands" in this report.) The 
separation of a strand from the specimen occurs 
when the fibres contained in the strand break at 
some cross section, followed by a fracture of the 
matrix material (or the interface) surrounding 
the strand. The fracture of the surrounding 
matrix runs parallel to the fibres, from the 
broken cross section to the specimen's ends, 
since the matrix material cannot transfer the 
load carried previously by the fibres in the 
strand. The process of fracture and separation of 
such strands continues gradually as the stress in 
the remaining unbroken portion of the specimen 
increases. Similar process takes place when the 
rate of extension is high or when a dead load test 
is performed. Under those conditions, separation 
of strands occurs at a very high rate, following 
the fast increase in the value of the stress. 

The failure process described hme has been 
observed in all tensile tests of glass/epoxy and 
glass/polyester unidirectonal composites [9]. 
The model that is proposed for such failure 
processes is composed of many strands in parallel 
which may fracture at different cross sections. 
When a strand fractures, the load is assumed to 
be distributed equally among the unbroken 
strands. Composite failure is supposed to occur 
when the remaining unbroken strands are unable 
to sustain the applied load. 

The number of fibres in each of the strands 
depends on the mechanical properties of the 
fibres and the matrix material, the volume 
fraction of the fibres and their distribution in the 
matrix. A proposed method for predicting the 
number of fibres in a strand is given in the 
appendix. 
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Figure 3 N e w  tensile failure mode l  of  g lass /po lymer  
compos i t e  mater ial .  

A specimen that fails according to the mechan- 
ism described here is represented by the model 
shown in Fig. 3. The specimen is assumed to be 
composed of a series of strands connected in 
parallel, all having the same size. The length of 
a strand is equal to the specimen's length and 
each one of the strands is divided into layers of 
length 8 (the ineffective length). The analysis of a 
strand is identical to the analysis of Rosen's 
model [4]. Once this analysis has been performed 
and the statistical strength characteristics of the 
strands are known, the analysis of the new model 
continues by considering the specimen to be 
composed of a bundle of such strands and using 
the statistical theory developed by Daniels [10] 
for calculating strength of bundles. 

3. S t a t i s t i c a l  a n a l y s i s  of  a s trand 
As mentioned earlier, the analysis of a strand 
whose length is equal to the specimen's length, is 
identical to the analysis of Rosen's model [4] and 
is presented here shortly for further use in the 
analysis of the specimen. The strength of a fibre 
link of length 3 is characterized by a distribution 
function f(~), and the associated cumulative 
distribution function F(a), where 

F ( ~ ) =  f~f(o-) d~ (2) 
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and a is the fibre stress. When many fibre links 
are connected in parallel, thus forming a bundle, 
it has been shown by Daniels [10] that the 
average fibre stress at bundle failure, (rB, 
approaches a normal distribution. The relative 
number of unbroken fibres at fibre stress a is 
1 - F(a), and the applied stress, ~B is related to 
the fibre stress a by: 

aB = ~[1 - F(r (3) 

The maximum fibre stress at bundle failure is 
denoted by af and is found by maximizing 8B in 
Equation 3. The strength of a bundle is character- 
ized by the normal distribution function 

(4) 

and the associated cumulative distribution 
function s 

~9(a~) = o~(~) d ~  (S) 
o 

with expectation 

~B = at[1 - F(a0]  (6) 

and standard deviation 

( r (a r )  }~ 
CB = (re ~ [I - F(ae)] (7) 

where N is the number of fibres in a bundle. The 
strand is treated as a chain composed of n links, 
where each link is a bundle of N fibres, character- 
ized by Equations 3 to 7. The strength of such a 
chain is defined by the distribution function 

/~(O's) = 17 O./(Gs) [1 - -  O ( a s ) ]  n-1 (8)  

where as is the average fibre stress at strand 
failure. The associated cumulative distribution 
function is given by, 

A(%) = f% a(a~) d% (9) 
d 0 

4. S t a t i s t i c a l  a n a l y s i s  o f  a s p e c i m e n  
The basic element of Rosen's model [4] is the 
fibre link of length 3, the ineffective length. The 
reason for defining the ineffective length in his 
analysis is that when many fibres are connected in 
parallel and a fibre breaks, it becomes ineffective 
as a load carrying element only within the region 
8, and the applied load is therefore being carried 
by the remaining unbroken fibres. The outcome 
of this approach is a model that fails within a 
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single cross sectional layer. This approach 
seems to be appropriate for characterizing the 
strength of strands which do in fact fail within a 
single cross sectional layer. Once a strand is 
broken, it becomes totally detached from the rest 
of the specimen and is therefore ineffective as a 
load carrying element. From the description of a 
strand it is clear that its total length (which is 
equal to the specimen's length) becomes ineffec- 
tive whereas in Rosen's analysis [4] only a small 
portion of a broken fibre is ineffective. 

If  we consider now the specimen to be com- 
posed of many strands connected in parallel, we 
have a situation analogous to that considered by 
Rosen [4] (i.e., a bundle of many fibres of length 
3 connected in parallel). The strand of length l, 
whose strength is characterized by Equations 8 
and 9, replaces the fibre link of length 3 whose 
strength is defined byf (a )  and F(a) (Equation 2). 
Daniels' theory [10] is applicable for calCulat- 
ing the distribution of the average strand stress at 
specimen's failure, and the analysis of the 
specimen's strength is analogous to that of a 
bundle (Equations 3 to 7). Thus, the relative 
number of unbroken strands at strand stress a s is 
1 - A(%) where A(as) is defined in Equation 9. 
If the stress applied to the specimen is denoted by 
&c, it is related to the strand stress by: 

&c = %[1 - A(%)] (10) 

The maximum strand stress at specimen failure 
is denoted by %u and is found by maximizing Pc 
in Equation 10, 

d 
d% {%[1 - A(as)]}~" = ~.o = 0 (11) 

which results in 

1 - A ( a ~ u )  
%u - )t(~,.) (12) 

or, after substitution from Equations 8 and 9 and 
carrying out the integration, Equation 12 takes 
the form 

1 - g2(%.) 
a s u -  n~O(%u ) (13) 

The statistical mode of the composite strength 
is defined as the most expected failure stress of 
the specimen, 8~, and is obtained by substituting 
of asu from Equation 13 in Equation 10, 

8~ = a~.[1 - A(asu)] (14) 

It is more convenient to rewrite ~o in terms of the 
function s rather than A and this is done using 
the relation 
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Figure 4 Variation of tensile strength with specimen's length for different strand size glass/epoxy composite. 

i - -  A(%u) = [1 - ~Q(%u)] n (15) 

which is obtained from Equations 8, 12 and 13. 
Thus, the statistical mode of the composite 
strength is 

5c = %,[1 - f2(%,)]" (16) 

In order to determine 6r in Equation 16, %u 
has to be obtained first by solving Equation 13. 
This equation can be solved by introducing a 
standardized variable 

O'B - -  (TB 
Z - CB (17) 

and the normal cumulative distribution function 
associated with this variable 

1 C z 
r - ~ _ )  J-oo exp( -  Z2/2) dZ (lS) 

The associated cumulative function s 
Equation 5 is then given in terms of r 

~(%,) = r ) (19) 

where 

O'su - -  (~B 
Zs. - q~B (20) 

Substitution of Equations 4, 19 and 20 in 
Equation 13 yields the following equation which 
can be solved numerically: 

q~(Z~u ) + + Z~u exp( -  Z~,2/2)] = 1 

. . . . .  (21) 

Once Z~, and r are known, %. and D(%.) 
can be obtained from Equations 19, 20, 6 and 7 
after substituting the appropriate strength 
distribution function of the fibres. For fibres 
characterized by the Weibull distribution function 

[8] their strength is given by Rosen [4]. 

f(~) = ~fi ~ ~B-1 exp ( -  c~ 8 ~ )  (22) 

and when Equation 21 is rewritten in terms of the 
fibre parameters it becomes 

r + e'~(1 - e - ' P )  +Zsu / 4, (2, ,)  
exp( -  Zs.2/2) -- 1 (23) 

For each appropriate value of Zsu, which defines 
strength of a specimen by Equations 16 and 20, 
there exist pairs of values of N and n that solve 
Equation 23. These values which are, respectively 
the number of fibres in a strand and the length of 
the specimen divided by the ineffective length, 
define the size of the specimen that is expected to 
fail under the applied load. By assigning various 
values to Zsu, the strength of different size 
specimens is obtained. The result of this proced- 
ure is shown graphically in Fig. 4 and the details 
of the calculation are given in the Appendix. 

5. Results and discussion 
The object of the present study was to establish 
a failure model for unidirectional glass reinforced 
polymei when tensile load is applied in the fibre 
direction. In particular, the discrepancy between 
predicted failure geometry and the actual shape 
of a fractured specimen (Fig. 1) has been 
investigated. As a result a failure model has been 
developed, that does predict a failure pattern 
which is compatible with experimentally observed 
failure patterns. 

Fig. 4 shows the variation of strength with 
specimen's length for specimens of different 
strand sizes. The failure stress 5c is normalized 
with respect to Rosen's prediction %* [4], and 
the specimen's length is given either in terms of 
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the number of ineffective lengths n (n = 
specimen's length/ineffective length), or as the 
real length of a specific E-glass/epoxy composite 
that was used in our tests. (E-glass with filament 
diameter of 0.013 mm and epoxy ERL-2256 and 
ZZL-0820 manufactured by Union Carbide). 

The strength of a specimen, having a finite 
number of fibres (N) in each strand, is shown to 
decrease as the length increases. The magnitude 
of this decrease in strength value is larger for 
specimens having small strands than for speci- 
mens having large strands. In the limit, when N 
approaches infinity, our theory coincides with 
Rosen's [4] prediction of strength. For each 
specimen's length the present analysis predicts 
lower strength value than in [4], thus improving 
agreement between the analysis and experimental 
results. Zweben [5], who has proposed two 
modes of composite tensile failure, predicted 
similar results to our present results although by 
using different models. His results for the two 
failure modes are shown also in Fig. 4 by the 
dotted lines. 

A direct verification of the size effect is very 
difficult and requires specialized equipment for 
preparing very large specimens. An opportunity 
for conducting tensile tests on long specimens was 
found by McKee and Sines [7] during a program 
to station meteorological instruments at very 
high altitude using a tethered balloon. The cable 
was made by drawing single-end S-glass yarn 
from 150 spools and impregnating them with 
epoxy resin. McKee and Sines report that 
specimens of three lengths have been tested, 
namely, 6, 30, and 120 in. The fibre diameter was 
0.0004 in. and the total number of fibres in a 
cross section was 31200. The experimental 
results concerning variation of tensile strength 
with specimen's length are not clearly stated in 
this report. Experimental strength values for two 
specimen's lengths are given in one of the figures 
(Fig. 3 of ref. [7]) as function of specimen's size. 
The lengths of the specimens for which the 
experimental results are plotted are not stated 
precisely, and the sizes of the specimens are 
given in terms of the number of "volume units". 
By drawing a line through those two points and 
measuring (from the graph) the fracture stresses 
for specimens of 107 and 10 o volume units 
(corresponding to 1.8 and 180in. long specimens), 
the values are 547 and 452 ksi respectively. This 
means that when the length of the specimen is 
increased by two orders of magnitude, from 1.8 
to 180 in., it loses about 17.4~ of its strength 
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that it had at the shorter length. Now examine in 
Fig. 4 the line corresponding to N = 49, which is 
the predicted failure stress for the S-glass/epoxy 
specimens, and take the strength values for 1.8 
and 180 in. long specimens. These values are, 
respectively, 0.730a~*, and 0.634a~*, indicating 
that the reduction of predicted strength for the 
longer specimen with respect to the shorter one 
is about 13.2~. The proximity of the experi- 
mental results to our prediction is not taken as a 
solid proof of the validity of the present theory 
on a quantitative basis. Many more experimental 
results as well as refinement of the theory are 
needed before being able to make such a state- 
ment. The main reason for bringing these 
experimental results is to demonstrate experi- 
mentally that the trend of size effect in the 
composite material discussed here is of the same 
order as predicted by our theory. 

The failure geometry shown in Fig. 1 is 
typical to all the test specimens used in this 
programme. All specimens disintegrated upon 
failure into many strands, and there was a 
distinct difference between the E-glass and the 
S-glass reinforced specimens. The strand size in 
the E-glass specimens was larger than the 
predicted size, while the S-glass specimens 
seemed to have a better fit with the predicted 
strand size. Variation of strand size within each 
group of specimens was not too large and it was 
possible to determine by observation whether a 
fractured specimen contained E-glass or S-glass 
fibres. 

Two typical strands taken from fractured 
E-glass and S-glass reinforced specimens are 
shown in Fig. 5. Attention should be given to 
two facts : (a) the larger strand size of the E-glass 
compared to the S-glass strand, and (b) the 
longer pull-out length of S-glass fibres compared 
to the E-glass specimen. Without referring to the 
exact strand size or the pull-out length that have 
been predicted (see appendix) by the present 
simplified analysis, the experimental results in 
Fig. 5 indicate that the present theory is at least 
in a quantitative agreement with experimental 
observations. 

It is believed that the present model is a step 
forward in the understanding of failure mechan- 
isms of unidirectional fibrous composites. The 
agreement between experimental results and the 
present analysis concerning failure geometry, 
strength values and strand size, is a good 
indication that the proposed failure model is a 
realistic one. 
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Figure 5 Typical fractured strand of (a) E-glass/epoxy, and (b) S-glass/epoxy composite material. 

Appendix 
A. Sample calculation of new model's 

strength (Equation 16) 
It has been shown in the test that the longitudinal 
strength of the new model is given by 6~ in 
Equation 16. The solution of Equation 16 
requires some simple numerical calculations, a 
sample of which is presented here. For fibres 
characterized by the Weibull distribution func- 
tion their strength is given by: 

f(~) = ~/33cr~-~ exp( -  ~3cr~) (1.1) 

and the associated cumulative distribution 
function: 

f(cr) = 1 - exp ( -  ~3cr#) (A.2) 

The maximum fibre stress at bundle failure ef is 
obtained by maximizing 8B in Equation 3, thus 

~f = (cx/33)-a/d (1.3) 

When these values are substituted in Equation 7, 
the standard deviation CB becomes 

CB = (o~f13) -i /# N -§ [(1 - e -x/#) e-i/d] § (A.4) 

The expectation of bundle (strand) strength is 

8B = (e~/38e) -x/# (A.5) 

which is equal to the strength of the composite 
given by Rosen (Equation 1). 

Now we have to solve Equation 23, which 
upon substituting the value /3 = 4, becomes 

n 
(1.875~/N + Z J  ~ exp( -  Z~,~/2) = 

1 - q~(Z~.)  ( A . 6 )  

By selecting appropriate values for Z ~  and using 
integral tables for ~(Zsu), a relation between n 
and N is obtained for each value of Zs,. From 
Equation 1.6 it is obvious that Z~u must be 
larger than -1.875~JN. For the physical 
problem at hand since N and n are both positive 
numbers greater than one, it is concluded that 
Zs. must be a negative number. Thus, we have a 
permissible range of variation for Zsu. 

The strand stress at specimen failure, %,, is 
obtained by substitution of Equations A.4 and 
A.5 in Equation 20: 

f 1 %, = 8~ 1 + - ~  [(1 - e -1/~) e+X/q~ (A.7) 

and for/3 = 4 it becomes 

[ Zsu] (1.8) %u = eB 1 +0.532 ~jN] 

Substitution of Equations A.8 and 19 in 
Equation 16 yields the final expression for 
calculating the strength: 

8c = 6 B  1 +0.532 4N ] [1 -~(Zsu)]" (A.9) 

Some numerical results obtained from Equations 
A.6 and A.9 are given in the following Table. 
The specimen length l is for E-glass/epoxy 
composite whose ineffective length is 3 = 0.62 
m m .  

B. Load transfer and strand size 
When a unidirectional fibrous composite is 
stressed in the direction parallel to the fibres, 
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Zsu 1 - ~b(Zsu) N n l (mm) ~c/o'e* 

-- 4.5 0.999 996 6 49 7310 4530 0.633 
64 6000 3720 0.679 
81 5080 3150 0.715 

100 4420 2740 0.745 
400 1910 1185 0.872 
900 1220 756 0.914 

-- 3.8 0.999 927 6 49 369 229 0.691 
64 306 190 0.731 
81 263 163 0.761 

100 230 143 0.784 
400 102 63 0.892 
900 66 41 0.928 

-- 3.2 0.999 3129 49 42 26 0.735 
64 36 22 0.768 
81 31 19 0.794 

100 27 17 0.815 
400 12 7 0.908 
900 8 5 0.938 

-- 2.6 0.995 3390 49 7.0 4.3 0.78 
64 5.9 3.7 0.81 
81 5.1 3.2 0.83 

100 4.5 2.8 0.84 
400 2.1 1.3 0.92 
900 1.4 0.9 0.95 

-- 1.8 0.964070 49 1.08 0.67 0.83 
64 0.93 0.58 0.85 
81 0.81 0.50 0.87 

100 0.72 0.45 0.88 
400 0.34 0.21 0.94 
900 0.22 0.14 0.96 

stress concentrations are built up in the vicinity 
of  fibre breaks during loading. The stress field in 
the vicinity of fibre breaks has been studied by 
many investigators, using various idealized 
models. A short account of  this work can be 
found in [11 ]. 

Three analytical approaches have been 
followed in studying the details of the stress 
distribution near fibre breaks. In the first, 
[12, 13, 4] the matrix is assume to be an elastic 
material, and the maximum stress induced in it is 
still below the yield stress (or fracture strength) 
of  the matrix. A second approach which is 
suitable for metallic matrices that can undergo 
plastic flow, has been presented by Kelly and 
Tyson [14] where they assume that the applied 
stress is of  sufficient magnitude to result in 
plastic flow in the matrix material near the fibre 
ends. A third approach has been proposed by 
Outwater [15] for a large volume fraction of  
discontinuous brittle fibres in a polymer matrix. 

In the case of  a brittle polymer matrix all the 
predictions of stress field near fibre ends in an 
elastic matrix have shown that the maximum 
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shear stress in the matrix, at practical load levels, 
is far above the fracture stress of  the resin. Fo r  
example, the predicted maximum shear stress in 
an epoxy matrix containing 60 ~ volume fraction 
of E-glass fibres, is approximately 0.3 times the 
average stress applied to the composite (based on 
[4]). The measured failure shear stress of  the 
same epoxy is about  0.05 times the failure stress 
of the same composite. Failure of the resin (or 
the bond between fibre and resin) near the fibre 
end must therefore have occurred at rather small 
loads. Outwater [15] suggests that the shrinkage 
of  the resin on curing subjects the fibres to a 
radial pressure p which is equal to that exerted 
by a thin walled tube of thickness t, internal 
diameter d and hoop stress e4 

2~0t (B.1) p = ---y- 

where t is half the separation between the 
surfaces of  adjacent fibres, d is fibre diameter and 
a0 is taken to be yield stress of the resin in 
tension. When debonding occurs near the fibre 
end, the load can be transferred to the broken 
fibre by the frictional force that existsbetweenthe 
fibre and the matrix. 

Neglecting shear deformations in the resin, the 
stress build-up in the fibre (~e) is linear 

4 t~px 
O'f - -  d (B.2) 

where /z is the coefficient of  friction between 
fibre and matrix and x is the distance along the 
fibre measured from its broken end. The distance 
5, required to build the fibre stress to its 
undisturbed value is obtained by substituting in 
Equation B.2 the value of the undisturbed fibre 
stress o'f = (Tc/Uf, where % is the stress applied to 
the composite and ve the fibre volume fraction. 
Thus, f rom Equations B.2 and B. 1 

8 - ~c d2 (B.3) 
8t z cr ~ tvf 

The value of t~ depends on the finish applied to 
the glass, and the value of ~ depends on the 
time after curing of the resin. Taking ~ = 0.4 
[16], and using experimental results [17] from 
stress relaxation experiments with epoxy resin, an 
estimated value of (tO is taken to be 7.50 kg/mm 2. 
Substitution of these values in Equation B.3 for 
r e = 0 . 6 ,  d = 0 . 0 1 3  mm and t = 0 . 0 0 1 9  m m  
results in 

3 = 0.0062~ o 
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and for composite strength value o f  100 kg /mm ~ 
the maximum value o f  ~ is: 

3ma x = 0.62 m m  
or: 

Smax -~ 48d 

This value o f  3 is only an estimate o f  the length 
over which debonding occurs near fibre breaks. 
We shall refer to this value as the "ineffective 
length" in the subsequent statistical analysis o f  a 
strand's  strength. 

When  a few neighbouring fibres fail at a single 
cross sectional layer whose thickness is about  5, 
they form a strand of  zero stress at the broken 
end. The load that  has to be transferred now by 
the matrix surrounding the strand is considerably 
larger than the load that  was transferred after 
failure of  a single fibre. The larger the strand 
size, the longer is the length that is required to 
build the stress in the strand to its undisturbed 
value. Since the test specimens are o f  finite length, 
the size of  the strand is finite too. 

The strand is assumed to have a circular cross 
section o f  diameter D, surrounded by a thin 
walled matrix tube o f  thickness t, th rough which 
the load is transferred to the strand by means of  
friction. Equat ion B. 1 still holds if d is replaced 
by D, and Equat ion B.3 becomes:  

cr c 0 2 
3s t rand  - -  8[L O'~b t (B.4) 

The maximum value of  3stratta varies f rom a few 
m m  to almost  the full specimen's length, 
depending on the location of  the fractured end of  
the strand. We shall assume a value which is half  
the specimen's length. The value o f  the applied 
stress cro is taken to be 90 kg /mm 2, which is close 
to the composite strength, since most  o f  the 
fibres fail at stress levels close to the composite 
strength. U p o n  substituting these values in 
Equat ion B.4 it is found  that  the strands'  
diameter o f  E-glass/epoxy 100 m m  long specimen 
is: 

D _~ 0.16 m m  

and the number  of  fibres (N) in the strand is: 

N = vf _~ 90 

I t  is wor th  noting that  for  S-glass/epoxy 
specimens having the same fibre volume content  
(~rc)ma x is about  twice the value for E-glass/epoxy 
and the strand size is therefore smaller, having a 
diameter D ~ 0.113 m m  and N = 45 fibres per 

strand. This change of  strand size has been 
observed and S-glass/epoxy specimens fractured 
into strands o f  smaller diameters than the E-glass 
/epoxy specimens (Fig. 5). 
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